379 research outputs found

    The role of still-frame parametric imaging in magnetic resonance assessment of left ventricular wall motion by non-cardiologists

    Get PDF
    open6openE. Caiani; E. Toledo; P. Maceneaney; K. Collins; R. Lang; V. Mor-AviCaiani, ENRICO GIANLUCA; E., Toledo; P., Maceneaney; K., Collins; R., Lang; V., Mor Av

    Volumetric Quantification of Myocardial Perfusion Using Analysis of Multi-Detector Computed Tomography 3D Datasets

    Get PDF
    Abstract Multi-detector computed tomography (MDCT) assessment of myocardial perfusion is based on visualization of 2D slices. To overcome the subjective nature of this analysis, we developed a new technique for quantification of myocardial perfusion from MDCT 3D datasets and tested it against nuclear myocardial perfusion imaging (MPI Introduction While MDCT is increasingly used as an alternative to invasive coronary angiography, recent studies have demonstrated its potential to provide perfusion information, which could be a valuable addition in the diagnosis of coronary artery disease (CAD). These studies reported hypoenhanced areas corresponding to scar visualized in patients post myocardial infarction (MI), and in animals with acute MI We recently developed a new quantitative index of perfusion that was designed to take into account these differences, and tested it on 2D slices. The addition of this analysis improved the diagnostic accuracy of MDCT evaluation of CAD, especially in patients with high calcium scores and stents Methods We studied 44 patients who underwent CT coronary angiography (CTCA) for the evaluation of CAD. These patients were divided into a study group of 29 patients (age: 62±10, 23 males) who also had MPI within 57±72 days (14 patient with normal MPI both at rest and stress and 15 patients with perfusion defects on MPI), and a control group of 15 patients (age: 58±16, 8 males) who had normal MPI both at rest and stress and no significant stenosis on CTCA. Patients who underwent coronary interventions between MPI and CTCA were excluded. MDCT imaging All CTCA studies were clinically indicated and performed according to a standard protocol. Images were obtained using an MDCT scanner (64-channels, Philips) with retrospective ECG-gating. A nonionic iodinated contrast agent was used (40-80 ml iv at 5-6 ml/sec)

    Improved quantification of left ventricular volumes and mass based on endocardial and epicardial surface detection from cardiac MR images using level set models

    Get PDF
    The reproducibility of left ventricular (LV) volume and mass measurements based on subjective slice-by-slice tracing of LV borders is affected by image quality, and volume estimates are biased by geometric modeling. The authors developed a technique for volumetric surface detection (VoSD) and quantification of LV volumes and mass without tracing and geometric approximations. The authors hypothesized that this technique is accurate and more reproducible than the conventional methodology. Methods. Images were obtained in 24 patients in 6 to 10 slices from LV base to apex (GE 1.5 T, FIESTA). Volumetric data were reconstructed, and endocardial and epicardial surfaces were detected using the level set approach. LV volumes were obtained from voxel counts and used to compute ejection fraction (EF) and mass. Conventional measurements (MASS Analysis) were used as a reference to test the accuracy of VoSD technique (linear regression, Bland-Altman). For both techniques, measurements were repeated to compute inter- and intra-observer variability. Results. VoSD values resulted in high correlation with the reference values (EDV: r = 0.98; ESV: r = 0.99; EF: r = 0.91; mass: r = 0.98), with no significant biases (8 ml, 5 ml, 0.2% and 9 g) and narrow limits of agreement (SD: 13 ml, 10 ml, 6% and 9 g). Inter-observer variability of the VoSD technique was lower (range 3 to 5%) than that of the reference technique (5 to 11%; p < 0.05). Intra-observer variability was also lower (1 to 3% vs. 7 to 10%; p < 0.05). Conclusion. VoSD technique allows accurate measurements of LV volumes, EF, and mass, which are more reproducible than the conventional methodology

    A multi-vendor, multi-center study on reproducibility and comparability of fast strain-encoded cardiovascular magnetic resonance imaging

    Get PDF
    Myocardial strain is a convenient parameter to quantify left ventricular (LV) function. Fast strain-encoding (fSENC) enables the acquisition of cardiovascular magnetic resonance images for strain-measurement within a few heartbeats during free-breathing. It is necessary to analyze inter-vendor agreement of techniques to determine strain, such as fSENC, in order to compare existing studies and plan multi-center studies. Therefore, the aim of this study was to investigate inter-vendor agreement and test-retest reproducibility of fSENC for three major MRI-vendors. fSENC-images were acquired three times in the same group of 15 healthy volunteers using 3 Tesla scanners from three different vendors: at the German Heart Institute Berlin, the Charité University Medicine Berlin-Campus Buch and the Theresien-Hospital Mannheim. Volunteers were scanned using the same imaging protocol composed of two fSENC-acquisitions, a 15-min break and another two fSENC-acquisitions. LV global longitudinal and circumferential strain (GLS, GCS) were analyzed by a trained observer (Myostrain 5.0, Myocardial Solutions) and for nine volunteers repeatedly by another observer. Inter-vendor agreement was determined using Bland-Altman analysis. Test-retest reproducibility and intra- and inter-observer reproducibility were analyzed using intraclass correlation coefficient (ICC) and coefficients of variation (CoV). Inter-vendor agreement between all three sites was good for GLS and GCS, with biases of 0.01-1.88%. Test-retest reproducibility of scans before and after the break was high, shown by ICC- and CoV values of 0.63-0.97 and 3-9% for GLS and 0.69-0.82 and 4-7% for GCS, respectively. Intra- and inter-observer reproducibility were excellent for both parameters (ICC of 0.77-0.99, CoV of 2-5%). This trial demonstrates good inter-vendor agreement and test-retest reproducibility of GLS and GCS measurements, acquired at three different scanners from three different vendors using fSENC. The results indicate that it is necessary to account for a possible bias (< 2%) when comparing strain measurements of different scanners. Technical differences between scanners, which impact inter-vendor agreement, should be further analyzed and minimized.DRKS Registration Number: 00013253. Universal Trial Number (UTN): U1111-1207-5874

    3D Echo systematically underestimates right ventricular volumes compared to cardiovascular magnetic resonance in adult congenital heart disease patients with moderate or severe RV dilatation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Three dimensional echo is a relatively new technique which may offer a rapid alternative for the examination of the right heart. However its role in patients with non-standard ventricular size or anatomy is unclear. This study compared volumetric measurements of the right ventricle in 25 patients with adult congenital heart disease using both cardiovascular magnetic resonance (CMR) and three dimensional echocardiography.</p> <p>Methods</p> <p>Patients were grouped by diagnosis into those expected to have normal or near-normal RV size (patients with repaired coarctation of the aorta) and patients expected to have moderate or worse RV enlargement (patients with repaired tetralogy of Fallot or transposition of the great arteries). Right ventricular end diastolic volume, end systolic volume and ejection fraction were compared using both methods with CMR regarded as the reference standard</p> <p>Results</p> <p>Bland-Altman analysis of the 25 patients demonstrated that for both RV EDV and RV ESV, there was a significant and systematic under-estimation of volume by 3D echo compared to CMR. This bias led to a mean underestimation of RV EDV by -34% (95%CI: -91% to + 23%). The degree of underestimation was more marked for RV ESV with a bias of -42% (95%CI: -117% to + 32%). There was also a tendency to overestimate RV EF by 3D echo with a bias of approximately 13% (95% CI -52% to +27%).</p> <p>Conclusions</p> <p>Statistically significant and clinically meaningful differences in volumetric measurements were observed between the two techniques. Three dimensional echocardiography does not appear ready for routine clinical use in RV assessment in congenital heart disease patients with more than mild RV dilatation at the current time.</p

    Methodological approach for the assessment of ultrasound reproducibility of cardiac structure and function: a proposal of the study group of Echocardiography of the Italian Society of Cardiology (Ultra Cardia SIC) Part I

    Get PDF
    When applying echo-Doppler imaging for either clinical or research purposes it is very important to select the most adequate modality/technology and choose the most reliable and reproducible measurements. Quality control is a mainstay to reduce variability among institutions and operators and must be obtained by using appropriate procedures for data acquisition, storage and interpretation of echo-Doppler data. This goal can be achieved by employing an echo core laboratory (ECL), with the responsibility for standardizing image acquisition processes (performed at the peripheral echo-labs) and analysis (by monitoring and optimizing the internal intra- and inter-reader variability of measurements). Accordingly, the Working Group of Echocardiography of the Italian Society of Cardiology decided to design standardized procedures for imaging acquisition in peripheral laboratories and reading procedures and to propose a methodological approach to assess the reproducibility of echo-Doppler parameters of cardiac structure and function by using both standard and advanced technologies. A number of cardiologists experienced in cardiac ultrasound was involved to set up an ECL available for future studies involving complex imaging or including echo-Doppler measures as primary or secondary efficacy or safety end-points. The present manuscript describes the methodology of the procedures (imaging acquisition and measurement reading) and provides the documentation of the work done so far to test the reproducibility of the different echo-Doppler modalities (standard and advanced). These procedures can be suggested for utilization also in non referall echocardiographic laboratories as an "inside" quality check, with the aim at optimizing clinical consistency of echo-Doppler data

    Single beat 3D echocardiography for the assessment of right ventricular dimension and function after endurance exercise: Intraindividual comparison with magnetic resonance imaging

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our study compares new single beat 3D echocardiography (sb3DE) to cardiovascular magnetic resonance imaging (CMR) for the measurement of right ventricular (RV) dimension and function immediately after a 30 km run. This is to validate sb3DE against the "gold standard" CMR and to bring new insights into acute changes of RV dimension and function after endurance exercise.</p> <p>Methods</p> <p>21 non-elite male marathon runners were examined by sb3DE (Siemens ACUSON SC2000, matrix transducer 4Z1c, volume rates 10-29/s), CMR (Siemens Magnetom Avanto, 1,5 Tesla) and blood tests before and immediately after each athlete ran 30 km. The runners were not allowed to rehydrate after the race. The order of sb3DE and CMR examination was randomized.</p> <p>Results</p> <p>Sb3DE for the acquisition of RV dimension and function was feasible in all subjects. The decrease in mean body weight and the significant increase in hematocrit indicated dehydration. RV dimensions measured by CMR were consistently larger than measured by sb3DE.</p> <p>Neither sb3DE nor CMR showed a significant difference in the RV ejection fraction before and after exercise. CMR demonstrated a significant decrease in RV dimensions. Measured by sb3DE, this decrease of RV volumes was not significant.</p> <p>Conclusion</p> <p>First, both methods agree well in the acquisition of systolic RV function. The dimensions of the RV measured by CMR are larger than measured by sb3DE. After exercise, the RV volumes decrease significantly when measured by CMR compared to baseline.</p> <p>Second, endurance exercise seems not to induce acute RV dysfunction in athletes without rehydration.</p

    Baseline and follow-up assessment of regional left ventricular volume using 3-dimensional echocardiography: comparison with cardiac magnetic resonance

    Get PDF
    The assessment of regional volumes is an option for analysis of the response of LV segments to interventions such as revascularization or cell therapy. We sought to compare regional volumes from 3D-echocardiography (3DE) with cardiac magnetic resonance (CMR) over follow-up
    corecore